ON CHARACTERIZATIONS OF W-TYPE SPACES

B.B.Waphare*

Abstract:

In this paper we obtain new characterization of certain spaces of W-type.

Keywords: W-type spaces, Hankel type transformation, Bessel type function.

2000 Mathematics subject classification: 46 F 12.

1. Introduction: The spaces of W-type were studied by B.L. Gurevich [5] and I. M. Gelfand and G.E. Shilov [4]. The investigations of the behaviour of the Fourier transformation on the Wspaces are done in [4] and [5]. Also W-spaces are applied to the theory of partial differential equations. These spaces are generalizations of spaces of S-type [3].

Pathak [6] and Eijndhoven and Kerkhof [2] introduced new spaces of W-type and investigated the behaviour of the Hankel transformation over them.

Motivated by the work of Pathak and Upadhyay [7], we give new characterizations of the spaces of W-type introduced in [2]. In our investigation the Hankel type transformation defined by

$$
h_{\alpha, \beta}(\phi)(x)=\int_{0}^{\infty} y^{4 \alpha}(x y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x y) \phi(y) d y, \quad x \in(0, \infty)
$$

plays an important role, where as usual J_{λ} denotes the Bessel type function of the first kind and order λ. Throughout this paper $(\alpha-\beta)$ will always represent a real number greater than $-1 / 2$.

From [1, Corollary 4.8], it is known that $h_{\alpha, \beta}$ is an automorphism of the space S_{e} constituted by all those complex valued even smooth functions $\phi=\phi(x), x \in \mathbb{R}$, such that

$$
\rho_{m, n}(\phi)=\operatorname{Sup}_{x \in \mathbb{R}}\left|x^{m} D^{n} \phi(x)\right|<\infty, \text { for every } \mathrm{M}, n \in \mathbb{N} .
$$

[^0]
International Journal of Marketing and Technology

Moreover $h_{\alpha, \beta}^{-1}$, the inverse of $h_{\alpha, \beta}$, coincides with $h_{\alpha, \beta}$ on S_{e}. Throughout this paper K will always denote the following set of functions.
$K=\left\{M \in C^{2}([0 \infty)): M(0)=M^{\prime}(0)=0, M^{\prime}(\infty)=\infty\right.$ and $\left.M^{\prime \prime}(x)>0, x \in(0, \infty)\right\}$.
M^{X} will represent the Young dual function of M ([4, p.19]).
Interesting and useful properties of the functions in K can be found in [2] and [4]. Following [4], we define the W -spaces as follows:

Let $M, \Omega \in K$ and $a, b>0$. The space $W_{m, a}$ consists of all those complex valued and smooth functions ϕ on \mathbb{R} such that for every $m \in \mathbb{N}-\{0\}$ and $k \in \mathbb{N}$ there exists $C_{m, k}>0$ for which

$$
\left|D^{k} \phi(x)\right| \leq C_{m, k} e^{-M(a(1-1 / m|x|))}, x \in \mathbb{R}
$$

The space $W^{\Omega, b}$ consists of all entire functions ϕ such that for every $m \in \mathbb{N}-\{0\}$ and $k \in \mathbb{N}$ there exists $C_{m, k}>0$ for which

$$
\left|z^{k} \phi(z)\right| \leq C_{m, k} e^{\Omega\left(\mathrm{b}\left(1+\frac{1}{\mathrm{~m}}\right)|\mathrm{I}(\mathrm{z})|\right)}, \quad z \in \mathbb{C}
$$

Ejndhoven and Kerkhof [2] investigated the behaviour of the transformation $h_{\alpha, \beta}$ on the subspaces of the W-spaces defined as follows :

A function ϕ is in $W e_{M, a}$ (respectively, $W^{\Omega, b}$ and $W_{M, a}^{\Omega, b}$). We now introduce new spaces of W-type.
Let $\Omega, M \in K, a, b>0$ and $1 \leq p \leq \infty$. A complex valued and smooth function $\phi=\phi(x)$, $x \in I=(0, \infty)$ is in $W e_{\alpha, \beta, M, a}^{p}$ if and only if ϕ belongs to S_{e} and

$$
\left\|e^{M[a(1-1 / m) x] \Delta_{\alpha, \beta}^{k} \phi(x)}\right\|_{p}<\infty \text { for every } m \in \mathbb{N}-\{0\} \text { and } k \in \mathbb{N}
$$

Here and in the sequel $\|\cdot\|_{p}$ denotes the norm in the Lebesgue space $L_{p}(0, \infty)$. By $\Delta_{\alpha, \beta}$ we denote the Bessel type operator

$$
x^{4 \beta-2} D x^{4 \alpha} D
$$

The space $W e^{p, \Omega, b}$ consists of $\phi \in S_{e}$ that admit a holomorphic extension to the whole complex plane and that satisfy the following two conditions:
(i) there exists $\epsilon>0$ such that for every $k \in \mathbb{N}$, we find $C_{k}>0$ for which

$$
\left|z^{k} \phi(z)\right| \leq C_{k} e^{(\Omega(b \in|I(z)|))}, z \in \mathbb{C},
$$

(ii) $\operatorname{Sup}_{y \in \mathbb{R}}\left\|e^{-\Omega\left(b\left(1+\frac{1}{n}\right)|y|\right)}(x+i y)^{m} \phi(x+i y)\right\|_{p}<\infty$, for every $n \in \mathbb{N}-\{0\}$ and $m \in \mathbb{N}$.

A complex valued and smooth function $\phi=\phi(x), x \in I$ is in $W e_{M, a}^{p, \Omega, b}$ if and only if, ϕ is in S_{e} admitting a holomorphic extension to the whole complex plane and ϕ satisfies (i) and (iii) $\operatorname{Sup}_{y \in \mathbb{R}}\left\|e^{\left(M[a(1-1 / m) x]-\Omega\left[b\left(1+\frac{1}{n}\right)|y|\right]\right) \phi(x+i y)}\right\|_{p}<\infty$ for every $m, n \in \mathbb{N}-\{0\}$.

In Section 2 we establish that $W e_{\alpha, \beta, M, a}^{p}=W e_{M, a}, W e^{p, \Omega, b}=W e^{\Omega, b}$ and $W e_{M, a}^{p, \Omega, b}=$ $W e_{M, a}^{\Omega, b}$ for every $(\alpha-\beta)>-1 / 2$ and $1 \leq p \leq \infty$.
Throughout this paper for every $1 \leq p \leq \infty$ we denote by p^{\prime} the conjugate of $p\left(\right.$ i.e. $\left.p^{\prime}=\frac{p}{p-1}\right)$. Also by C we always represent a suitable positive constant, not necessarily the same in each occurrence.
2. Characterizations of $W e$-spaces: In this section we prove by using the Hankel type transformation $h_{\alpha, \beta}$, that $W e_{\alpha, \beta, M, a}^{p}=W e_{M, a}, W e^{p, \Omega, b}=W e^{\Omega, b}$ and $W e_{M, a}^{p, \Omega, b}=W e_{M, a}^{\Omega, b}$ for every $(\alpha-\beta)>-1 / 2$ and $1 \leq p \leq \infty$.
Lemma 2.1: Let $1 \leq p \leq \infty$ and $(\alpha-\beta)>-1 / 2$. Then $W e_{\alpha, \beta, M, a}^{p}$ is contained in $W e_{M, a}$.
Proof: First assume that $1 \leq p \leq \infty$. Let ϕ be in $W e_{\alpha, \beta, M a}^{p}$. Define

$$
\begin{equation*}
\psi(y)=h_{\alpha, \beta}(\phi)(y)=\int_{0}^{\infty}(x y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x y) \phi(x) x^{4 \alpha} d x, y \in \mathbb{C} \tag{2.1}
\end{equation*}
$$

According to Corollary 4.8 in [1], ψ is in S_{e}. Moreover, the last integral is defined for every $y \in \mathbb{C}$. In fact, for every $y \in \mathbb{C}$ and $n \in \mathbb{N}-\{0\}$, by virtue of (5.3b) of [2] and Holder's inequality
we have

$$
\begin{aligned}
& \int_{0}^{\infty}\left|(x y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x y)\right||\phi(x)| x^{4 \alpha} d x \leq C \int_{0}^{\infty} e^{x|I(y)|}|\phi(x)| x^{4 \alpha} d x \\
& \leq C \int_{0}^{\infty} e^{x|I(y)|-M(a(1-1 / n) x)} e^{M(a(1-1 / n) x)}|\phi(x)| x^{4 \alpha} d x \\
& \leq C\left(\int_{0}^{\infty}\left|e^{x|I(y)-M(a(1-1 / n) x)|} x^{4 \alpha}\right|^{p^{\prime}} d x\right)^{1 / p^{\prime}} \\
& \times\left(\int_{0}^{\infty}\left|e^{M(a(1-1 / n)) x} \phi(x)\right|^{p} d x\right)^{1 / p}
\end{aligned}
$$

International Journal of Marketing and Technology

$\leq C\left(\int_{0}^{\infty}\left|e^{x \mid I(y)-M(a(1-1 / n))} x^{4 \alpha}\right|^{p^{\prime}} d x\right)^{1 / p^{\prime}}$.
Moreover, denoting as usual by M^{X} the yong dual of M, according to well-known properties of $M^{x}([4])$ we obtain for every $x \in I, y \in \mathbb{C}, n, m \in \mathbb{N}-\{0\}$, where $1<m<n$,

$$
\begin{aligned}
x|I(y)|-M(a(1-1 / n) x)= & \frac{x|I(y)|}{a(1-1 / m)} a(1-1 / m)-M(a(1-1 / n) x) \\
\leq & M(a(1-1 / m) x)-M\left(a\left(1-\frac{1}{n}\right) x\right) \\
+ & M^{X}\left(\frac{|I(y)|}{a(1-1 / m)}\right) \\
& \leq-M\left(a\left(\frac{1}{m}-1 / n\right) x\right)+M^{X}\left(\frac{I(y)}{a(1-1 / m)}\right)
\end{aligned}
$$

Hence for every $m, n \in \mathbb{N}-\{0\}$ with $1<m<n$ we can write

$$
\begin{aligned}
& \int_{0}^{\infty}\left|(x y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x y)\right||\phi(x)| x^{4 \alpha} d x \\
& \left.\leq C\left(\int_{0}^{\infty} e^{-M\left(a\left(\frac{1}{m}-1 / n\right) x\right)} x^{4 \alpha}\right)^{p^{\prime}} d x\right)^{1 / p^{\prime}} e^{M^{X}\left(\frac{|I(y)|}{a(1-1 / m)}\right)}
\end{aligned}
$$

$$
\leq C e^{M^{X}\left(\frac{|I(y)|}{a(1-1 / m)}\right)}, \quad y \in \mathbb{C}, \quad \text { because } \lim _{x \rightarrow \infty} M^{\prime}(x)=\infty
$$

If $p=1$ or $p=\infty$ we can argue in a similar way.
Thus we conclude that the integral in the right hand side of (2.1) is a continuous extension of ψ to the whole complex plane. Moreover, by proceeding in a similar way we can see that it also is entire. Such an extension will be denoted again by ψ. Note that ψ is an even function.

We prove that $\psi \in W e^{M^{X, 1 / a}}$. It is simple to deduce from Lemma 5-4-1 of [9] that for every $k \in \mathbb{N}$

$$
y^{2 k} \psi(y)=(-1)^{k} \int_{0}^{\infty}(x y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x y) \Delta_{\alpha, \beta}^{k}[\phi(x)] x^{4 \alpha} d x, y \in \mathbb{C}
$$

Then, proceeding as above, we get for every $k, m \in \mathbb{N}, m>1$,

$$
\left|y^{2 k} \psi(y)\right| \leq \int_{0}^{\infty}\left|(x y)^{-(\alpha-\beta)} J_{\alpha-\beta}(x y)\right| \mid \Delta_{\alpha, \beta}^{k}[\phi(x)] x^{4 \alpha} d x
$$

International Journal of Marketing and Technology http://www.ijmra.us

$\leq C \int_{0}^{\infty} e^{x|I(y)|} x^{4 \alpha}\left|\Delta_{\alpha, \beta}^{k}[\phi(x)]\right| d x$
$\leq C e^{M^{X}\left(\frac{|I(y)|}{a(1-1 / m)}\right)}, y \in \mathbb{C}$.
Hence $\psi \in W e^{M^{X}, 1 / a}$.
Since $h_{\alpha, \beta}=h_{\alpha, \beta}^{-1}$ on S_{e}, according to Lemma 7.4 of [2], we conclude that $W e_{\alpha, \beta, M, a}^{p}$ is contained in $W e_{M, a}$.
Lemma 2.2: Let $1 \leq p \leq \infty$ and $(\alpha-\beta)>-1 / 2$. Then $W e_{M, a}$ is contained in $W e_{\alpha, \beta, M, a}^{p}$.
Proof: By virtue of Lemma 7.3 of [2], $h_{\alpha, \beta}\left(W e_{M, a}\right) \subset W e^{M^{X}, 1 / a}$.
Since $h_{\alpha, \beta}=h_{\alpha, \beta}^{-1}$ on S_{e}, our result will be established when we see that $h_{\alpha, \beta}(\phi)$ is in $W e_{\alpha, \beta, M, a}^{p}$.

Note first that according to Corollary 4.8 of [1], $h_{\alpha, \beta} \phi$ is in S_{e}. Let $k \in \mathbb{N}$. By involving Lemma 5-4-1 of [9] we can obtain that

$$
\begin{equation*}
\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)=(-1)^{k} h_{\alpha, \beta}\left(z^{2 k} \phi(z)\right)(x), x \in I \tag{2.3}
\end{equation*}
$$

A procedure similar to the one developed in the proof of Lemma 6.1 of [2] allows us to write, for every $x>1$ and $\tau>0$,

$$
\begin{aligned}
\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi) & (x)=\frac{1}{2} \int_{-\infty}^{\infty}(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau) \\
& \times(\sigma+i \tau)^{2(\alpha-\beta)+2 k+1} d \sigma
\end{aligned}
$$

where $H_{\alpha, \beta}^{(1)}$ denotes the Hankel type functions ([8], p.73).
Now for every $x>1$ and $\tau>0$ we divide the last integral as follows :
$\int_{-\infty}^{\infty}(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2(\alpha-\beta)+2 k+1} d \sigma$
$\left(\int_{|x(\sigma+i \tau)| \leq 1}+\int_{|x(\sigma+i \tau)|>1}\right)(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}$
$\times(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2(\alpha-\beta)+2 k+1} d \sigma$.
We will analyze each of the integrals separately.

International Journal of Marketing and Technology

Assume first that $(\alpha-\beta) \geq 1 / 2$. On one side by using (5.3c) of [2], we get for every $n \in$ $\mathbb{N}-\{0\}$
$\int_{|x(\sigma+i \tau)| \leq 1}\left|(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2(\alpha-\beta)+2 k+1}\right| d \sigma$
$\leq C e^{-x \tau} \int_{-\infty}^{\infty}|\phi(\sigma+i \tau)| d \sigma$
$\leq C e^{-x \tau+M^{X}[1 / a(1+1 / n) \tau], x>1 \text { and } \tau>0 \text {; }}$
On the other hand, by using again (5.3c) of [2], for every $n \in \mathbb{N}-\{0\}$

$$
\begin{align*}
& \quad \int_{|x(\sigma+i \tau)|>1}\left|(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{2(\alpha-\beta)+2 k+1}\right| d \sigma \\
& \leq C e^{-x \tau} \int_{-\infty}^{\infty}\left|\phi(\sigma+i \tau)(\sigma+i \tau)^{2(\alpha-\beta)+2 k+1}\right| d \sigma \tag{2.5}\\
& \leq C e^{-x \tau+M^{X}[1 / a(1+1 / n) \tau]}, \quad x>1 \text { and } \tau>0 .
\end{align*}
$$

For fixed $n \in \mathbb{N}-\{0\}$, we choose $\tau>0$ such that

$$
M^{X^{\prime}}\left(\frac{1}{a}\left(1+\frac{1}{n}\right) \tau\right)=\frac{a x}{(1+1 / n)}
$$

Then from Lemma 2.4 of [2] we have

$$
\begin{equation*}
-x \tau+M^{X}(1 / a(1+1 / n) \tau)-M\left(\frac{a x}{1+1 / n}\right) \tag{2.6}
\end{equation*}
$$

Hence by combining (2.4), (2.5) and (2.6), it follows that

$$
\left|\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)\right| \leq C e^{-M\left[a x\left(1-\frac{1}{n+1}\right)\right], x>1, \text { and } n \in \mathbb{N}}
$$

Note also that, if $-1 / 2<(\alpha-\beta)<1 / 2$, by involving (5.3.d) of [2] one has

$$
\left|\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta} \phi(x)\right| \leq C e^{-x \tau} \int_{-\infty}^{\infty}\left|\phi(\sigma+i \tau)(\sigma+i \tau)^{\alpha-\beta+2 k+1 / 2}\right| d \sigma, \quad \tau>0
$$

and $x>1$.
Proceeding as above, we conclude that

$$
\left|\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)\right| \leq C e^{-M[a x(1-1 / n)]}, \quad x>1 \text { and } m \in \mathbb{N}-\{0\}
$$

Now let $x \in(0,1)$ and $m \in \mathbb{N}-\{0\}$. According to (5.3b) of [2] we have

$$
\left|e^{M[a x(1-1 / m)]} \Delta_{\alpha, \beta}^{k}\left[h_{\alpha, \beta}(\phi)(x)\right]\right|=\left|e^{M[a x(1-1 / m)]} h_{\alpha, \beta}\left(z^{2 k} \phi(z)\right)(x)\right|
$$

International Journal of Marketing and Technology http://www.ijmra.us

$$
\leq C \int_{0}^{\infty} \sigma^{2(\alpha-\beta)+2 k+1}|\phi(\sigma)| d \sigma
$$

because M is an increasing function on $(0, \infty)$.
Hence, for every $k \in \mathbb{N}$ and $m \in \mathbb{N}-\{0\}$,

$$
\left|e^{M[a x(1-1 / m)]} \Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)\right| \leq C, \quad x>0
$$

and, if $m \in \mathbb{N}-\{0\}, k \in \mathbb{N}$ and $1 \leq p<\infty$, then

$$
\left\{\int_{0}^{\infty}\left|e^{M[a x(1-1 / m)]} \Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)\right|^{p} d x\right\}^{1 / p} \leq C
$$

because

$$
\int_{0}^{\infty} e^{-p M\left[a x\left(1 / m-\frac{1}{(m+1)}\right)\right]} d x<\infty
$$

Thus we establish that $h_{\alpha, \beta} \phi \in W e_{\alpha, \beta, M, a}^{p}, 1 \leq p \leq \infty$, and the proof is completed.
From Lemmas 2.1 and 2.2 we deduce
Theorem 2.1: For every $1 \leq p \leq \infty$ and $(\alpha-\beta)>-1 / 2, W e_{\alpha, \beta, M, a}^{p}=W e_{M, a}$.
Lemma 2.3: Let $1 \leq p \leq \infty$. Then $W e^{p, \Omega, b}$ is contained in $W e^{\Omega, b}$.
Proof: Let ϕ be in $W e^{p, \Omega, b}$. Assume that $(\alpha-\beta)>-1 / 2$. Proceeding as in the proof of Lemma 2.2 we can establish that for every $k \in \mathbb{N}$ there exists $\ell=\ell(k)$ such that

$$
\left|\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)\right| \leq C e^{-x \tau} \int_{-\infty}^{\infty}|\phi(\sigma+i \tau)|\left(|\sigma+i \tau|^{\ell}+1\right) d \sigma, \quad \tau, x \in(0, \infty) .
$$

Hence, according to Holder's inequality and (2.6), we obtain for each $k \in \mathbb{N}, m \in \mathbb{N}-\{0\}$ and suitable $\tau>0$

$$
\begin{aligned}
& e^{\Omega^{\mathrm{x}}\left[\frac{1}{\mathrm{~b}}(1-1 / \mathrm{m}) \mathrm{x}\right]}\left|\Delta_{\alpha, \beta}^{k} h_{\alpha, \beta}(\phi)(x)\right| \\
& \leq C e^{\Omega^{\mathrm{x}}\left[\frac{1}{\mathrm{~b}}\left(1-\frac{1}{\mathrm{~m}}\right) \mathrm{x}\right]-\Omega^{\mathrm{x}}\left[\frac{1}{\mathrm{~b}}\left(1-\frac{1}{\mathrm{~m}+1}\right)\right) \mathrm{x}}\left\{\int_{-\infty}^{\infty} \frac{d \sigma}{\left(1+\sigma^{2}\right)^{p^{\prime}}}\right\}^{1 / p^{\prime}} \\
& \left.\times\left\{\int_{-\infty}^{\infty} e^{-\Omega\left[b\left(1+\frac{1}{m}\right) \tau\right]}(|\sigma+i \tau|+1)\left(|\sigma+i \tau|^{\ell}+1\right)|\phi(\sigma+i \tau)|\right)^{p} d \sigma\right\}^{1 / p} \\
& \leq C, x \in(0, \infty)
\end{aligned}
$$

International Journal of Marketing and Technology

provided that $1 \leq p \leq \infty$. When $p=1$ or $p=\infty$ we can proceed in a similar way. Thus we prove that $h_{\alpha, \beta}(\phi) \in W e_{\alpha, \beta, \Omega^{\mathrm{x}}, 1 / \mathrm{p}}^{\infty}$. Therefore Theorem 2.1 shows that $h_{\alpha, \beta}(\phi) \in W e_{\Omega^{\mathrm{x}}, 1 / \mathrm{b}}$.

Since $h_{\alpha, \beta}=h_{\alpha, \beta}^{-1}$ on S_{e}, it is sufficient to take into account Lemma 7.3 of [2] to see that $\phi \in W e^{\Omega, b}$, and the proof of this lemma is complete.

The next result is not difficult to see.
Lemma 2.4: Let $1 \leq p \leq \infty$. Then $W e^{\Omega, b}$ is contained in $W e^{p, \Omega, b}$.
As an immediate consequence of Lemmas 2.3 and 2.4 we obtain the following
Theorem 2.2: Let $1 \leq p \leq \infty$. Then $W e^{p, \Omega, b}=W e^{\Omega, b}$.
Lemma 2.5: Let $1 \leq p \leq \infty$. Then $W e_{M, a}^{p, \Omega, b}$ is contained in $W e_{M, a}^{\Omega, b}$.
Proof: Let $\phi \in W e_{M, a}^{p, \Omega, b}$. Choose $(\alpha-\beta) \geq 1 / 2$. Since $h_{\alpha, \beta}=h_{\alpha, \beta}^{-1}$ on S_{e}, by virtue of Lemma 7.5 of [2], to prove this lemma it is sufficient to see that $h_{\alpha, \beta} \phi$ is in $W e_{\Omega^{X}, 1 / b}^{M^{X}, 1 / a}$.
The Hankel type transformation $h_{\alpha, \beta} \phi$ of ϕ is in S_{e} (Corollary 4.8 [1]). Moreover proceeding as in the proof of Lemma 2.1, we can see that $h_{\alpha, \beta} \phi$ can be holomorphically extended to the whole complex plane.

Let $\tau>0$. An argument similar to the one developed in Lemma 6.1 of [2] allows us to write.

$$
\begin{aligned}
& \left(h_{\alpha, \beta} \phi\right)(x)=\frac{1}{2} \int_{-\infty}^{\infty}(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau) \\
& \times(\sigma+i \tau)^{4 \alpha} d \sigma, \quad|x|>1
\end{aligned}
$$

As in the proof of Lemma 2.2,

$$
\begin{gathered}
\left(h_{\alpha, \beta} \phi\right)(x)=\frac{1}{2}\left(\int_{|x(\sigma+i \tau)| \leq 1}+\int_{|x(\sigma+i \tau)>1|}\right)(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)} \\
\times(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{4 \alpha} d \sigma, \quad|x|>1
\end{gathered}
$$

We must analyze each of the two integrals.
According to (5.3c) of [2] we have, for every $n, m \in \mathbb{N}-\{0\}$,

$$
\begin{aligned}
& \quad \int_{|x(\sigma+i \tau)|>1}\left|(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{4 \alpha}\right| d \sigma \\
& \leq C|x|^{2 \beta-1} \int_{-\infty}^{\infty} e^{-(R(x)) \tau-(I(x)) \sigma}\left|\phi(\sigma+i \tau)(\sigma+i \tau)^{2 \alpha}\right| d \sigma
\end{aligned}
$$

International Journal of Marketing and Technology http://www.ijmra.us

$$
\leq C|x|^{2 \beta-1}\left\{\int_{-\infty}^{\infty} e^{(R(x)) \tau+|I(x)||\sigma|-M\left(a\left(1-\frac{1}{n}\right) \sigma\right)+\Omega\left(b\left(1+\frac{1}{m}\right) \tau\right)}\left(|\sigma+i \tau|^{2 \alpha}\right)^{p^{\prime}} d \sigma\right\}^{1 / p^{\prime}}
$$

where $|x|>1$, provided that $1<p<\infty$. By Lemma 2.4 of [2],
$|I(x)||\sigma| \leq M^{X}\left(\frac{|I(x)|}{a\left(1-\frac{1}{\ell}\right)}\right)+M(a(1-1 / \ell)|\sigma|, \sigma \in \mathbb{R}, x \in \mathbb{C})$ and $\ell \in \mathbb{N}$,
$\ell>1$.
Then

$$
|R(x)||\sigma|-M(a(1-1 / n)|\sigma|) \leq M^{X}\left(\frac{|R(x)|}{a(1-1 / \ell)}\right)-M\left(a\left(\frac{1}{\ell}-1 / n\right)|\sigma|\right)
$$

where $\sigma \in \mathbb{R}, x \in \mathbb{C}$ and $\ell, n \in \mathbb{N}, n>l>1$.
We assume now that $R(x)>0$ and we choose $\tau>0$ such that

$$
\Omega^{\prime}(b(1+1 / m) \tau)=\frac{R(x)}{b(1+1 / m)} .
$$

Then again by Lemma 2.4 of [2],

$$
\tau R(x)=\Omega(b(1+1 / m) \tau)+\Omega^{X}\left(\frac{R(x)}{b(1+1 / m)}\right)
$$

Hence, Since $(2 \beta-1) \leq 0$ and $1<p<\infty$, we obtain for every $|x| \geq 1$ and $R(x)>0$

$$
\begin{align*}
& \quad \int_{|x(\sigma+i \tau)|>1}\left|(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{4 \alpha}\right| d \sigma \\
& \leq C e^{M^{X}\left(\frac{|I(x)|}{a(1-1 / \ell)}\right)-\Omega^{X}\left(\frac{R(x)}{b(1+1 / m)}\right)} \\
& \quad \times\left(\int_{-\infty}^{\infty}\left(e^{-M(a(1 / \ell-1 / n)|\sigma|)}|\sigma+i \tau|^{2 \alpha}\right)^{p^{\prime}} d \sigma\right)^{1 / p^{\prime}} \tag{2.7}\\
& \leq C e^{M^{X}\left(\frac{|I(x)|}{a(1-1 / \ell)}\right)-\Omega^{X}\left(\frac{R(x)}{b(1+1 / m)}\right), n, m, \ell \in \mathbb{N}-\{0\}, 1<\ell<n}
\end{align*}
$$

because

$$
\int_{-\infty}^{\infty}\left(e^{-M(a(1 / \ell-1 / n)|\sigma|)}|\sigma+i \tau|^{2 \alpha}\right)^{p^{\prime}} d \sigma<\infty
$$

If $p=1$ or $p=\infty$, we can proceed in a similar way.
On the other hand, by (5.3c) of [2]

$$
\begin{equation*}
\int_{|x(\sigma+i \tau)| \leq 1}\left|(x(\sigma+i \tau))^{-(\alpha-\beta)} H_{\alpha, \beta}^{(1)}(x(\sigma+i \tau)) \phi(\sigma+i \tau)(\sigma+i \tau)^{4 \alpha}\right| d \sigma \tag{2.8}
\end{equation*}
$$

International Journal of Marketing and Technology http://www.ijmra.us

$\leq C|x|^{-2(\alpha-\beta)} \int_{-\infty}^{\infty} e^{-(R(x)) \tau+|I(x)||\sigma|}|\phi(\sigma+i \tau)(\sigma+i \tau)| d \sigma$
$\leq C e^{M^{X(}\left(\frac{|I(x)|}{a\left(1-\frac{1}{\ell}\right)}\right)-\Omega^{X}\left(\frac{R(x)}{b(1+1 / m)}\right)}, \quad|x| \geq 1$
and
$R(x)>0$, for $m, \ell \in \mathbb{N}-\{0\}, \ell>1$.
Hence from (2.7) and (2.8) we conclude that

$$
\begin{equation*}
\left|h_{\alpha, \beta} \phi(x)\right| \leq C e^{M^{X}\left(\frac{1}{a}\left(1+\frac{1}{\ell-1}\right)|I(x)|\right)-\Omega^{X}\left(\frac{1}{b}\left[1-\frac{1}{m+1}\right] R(x)\right)} \tag{2.9}
\end{equation*}
$$

for every $|x| \geq 1$ and $R(x)>0, m, \ell \in \mathbb{N}$, where $\ell>1$.
Since $h_{\alpha, \beta} \phi$ is even, the corresponding inequality (2.9) also holds when $R(x)<0$. Now let $|x|<1$. By using (5.3b) of [2] we deduce that

$$
\left|h_{\alpha, \beta} \phi(x)\right| \leq C \int_{0}^{\infty} e^{t|I(x)|}|\phi(t)| t^{4 \alpha} d t
$$

Proceeding as in the above case, we conclude that $h_{\alpha, \beta} \phi \in W e_{\Omega^{X}, 1 / b}^{M^{X}, 1 / a}$.
Thus proof is completed.
Now we can prove the following result easily.
Lemma 2.6: Let $1 \leq p \leq \infty$. Then $W e_{M, a}^{\Omega, b}$ is contained in $W e_{M, a}^{p, \Omega, b}$.
From Lemma 2.5 and 2.6 we obtain
Theorem 2.3: Let $1 \leq p \leq \infty$. Then $W e_{M, a}^{p, \Omega, b}=W e_{M, a}^{\Omega, b}$.

International Journal of Marketing and Technology

References:

1. S.J.L. Van Eijndhoven and J. de Graaf, Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. Van Wetensch, A 86(1983), 77-87, MR 84 e: 46037.
2. S.J.L. Van Eijndhoven and M.J.Kerkhof, The Hankel transformation and spaces of type W, reports on Applied and Numerical Analysis, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1988.
3. I.M. Gelfand and G.E. Shilov, Generalized functions, Vol.2, Academic Press, New York, 1967, MR 37:5693.
4. I.M. Gelfand and G.E. Shilov, Generalized functions, Vol.3, Academic Press, New York, 1967, MR 36:507.
5. B.L. Gurevich, Nouveaux espaces de fonctions fondamentales et generalizes et le problem de Cauchy pour des systems d' equations aux differences finis, D.A.N SSSR, 99 (1954), 893-896 ; 108(1956), 1001-1003. (Russian) MR 16: 720b ; MR 18:216e.
6. R. S. Pathak, On Hankel transformable spaces and a Cauchy problem, Can. J. Math., XXX VII (1) (1985), 84-106, MR 86d : 46037.
7. R. S. Pathak and S.K. Upadhyay, W^{p}-spaces and Fourier transform, Proc. Amer. Math. Soc., 121(3) (1994), 733-738. MR 94i:46051.
8. G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1956. MR 6:64a (1944 ed.)
9. A.H.Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968. MR 54: 10991.

[^0]: * MIT ACSC, Alandi, Tal: Khed, Dist: Pune, Maharashtra, India.

