ON CHARACTERIZATIONS OF W-TYPE SPACES

B.B.Waphare*

Abstract:

In this paper we obtain new characterization of certain spaces of W-type.

Keywords: W-type spaces, Hankel type transformation, Bessel type function.

2000 Mathematics subject classification: 46 F 12.

1. Introduction: The spaces of W-type were studied by B.L. Gurevich [5] and I. M. Gelfand and G.E. Shilov [4]. The investigations of the behaviour of the Fourier transformation on the W-spaces are done in [4] and [5]. Also W-spaces are applied to the theory of partial differential equations. These spaces are generalizations of spaces of S-type [3].

Pathak [6] and Eijndhoven and Kerkhof [2] introduced new spaces of W-type and investigated the behaviour of the Hankel transformation over them.

Motivated by the work of Pathak and Upadhyay [7], we give new characterizations of the spaces of W-type introduced in [2]. In our investigation the Hankel type transformation defined by

$$h_{\alpha,\beta}(\phi)(x) = \int_{0}^{\infty} y^{4\alpha} (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \phi(y) dy, \qquad x \in (0,\infty),$$

plays an important role, where as usual J_{λ} denotes the Bessel type function of the first kind and order λ . Throughout this paper ($\alpha - \beta$) will always represent a real number greater than -1/2.

From [1, Corollary 4.8], it is known that $h_{\alpha,\beta}$ is an automorphism of the space S_e constituted by all those complex valued even smooth functions $\phi = \phi(x), x \in \mathbb{R}$, such that

 $\rho_{m,n}(\phi) = \operatorname{Sup}_{x \in \mathbb{R}} |x^m D^n \phi(x)| < \infty, \text{ for every } M, n \in \mathbb{N}.$

^{*} MIT ACSC, Alandi, Tal: Khed, Dist: Pune, Maharashtra, India.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

Moreover $h_{\alpha,\beta}^{-1}$, the inverse of $h_{\alpha,\beta}$, coincides with $h_{\alpha,\beta}$ on S_e . Throughout this paper K will always denote the following set of functions.

SSN: 2249-105

$$K = \{ M \in C^2 ([0\infty)) : M(0) = M'(0) = 0, M'(\infty) = \infty \text{ and } M''(x) > 0, x \in (0,\infty) \}.$$

 M^X will represent the Young dual function of M ([4, p.19]).

IJV

Interesting and useful properties of the functions in *K* can be found in [2] and [4]. Following [4], we define the W-spaces as follows:

Let $M, \Omega \in K$ and a, b > 0. The space $W_{m,a}$ consists of all those complex valued and smooth functions ϕ on \mathbb{R} such that for every $m \in \mathbb{N} - \{0\}$ and $k \in \mathbb{N}$ there exists $C_{m,k} > 0$ for which

$$|D^k \phi(x)| \leq C_{m,k} e^{-M(a(1-1/m|x|))}, x \in \mathbb{R}.$$

The space $W^{\Omega,b}$ consists of all entire functions ϕ such that for every $m \in \mathbb{N} - \{0\}$ and $k \in \mathbb{N}$ there exists $C_{m,k} > 0$ for which

$$|z^{k}\phi(z)| \leq C_{m,k} e^{\Omega\left(b\left(1+\frac{1}{m}\right)|I(z)|\right)}, \quad z \in \mathbb{C}.$$

Ejndhoven and Kerkhof [2] investigated the behaviour of the transformation $h_{\alpha,\beta}$ on the subspaces of the *W* – spaces defined as follows :

A function ϕ is in $We_{M,a}$ (respectively, $W^{\Omega,b}$ and $W^{\Omega,b}_{M,a}$). We now introduce new spaces of W –type.

Let $\Omega, M \in K$, a, b > 0 and $1 \le p \le \infty$. A complex valued and smooth function $\phi = \phi(x)$, $x \in I = (0, \infty)$ is in $W e^p_{\alpha, \beta, M, a}$ if and only if ϕ belongs to S_e and

$$\left\| e^{M[a(1-1/m)x]\Delta_{\alpha,\beta}^k \phi(x)} \right\|_p < \infty \text{ for every } m \in \mathbb{N} - \{0\} \text{ and } k \in \mathbb{N}.$$

Here and in the sequel $\|\cdot\|_p$ denotes the norm in the Lebesgue space $L_p(0,\infty)$. By $\Delta_{\alpha,\beta}$ we denote the Bessel type operator

$$x^{4\beta-2}D x^{4\alpha} D.$$

The space $W e^{p,\Omega,b}$ consists of $\phi \in S_e$ that admit a holomorphic extension to the whole complex plane and that satisfy the following two conditions:

(i) there exists $\epsilon > 0$ such that for every $k \in \mathbb{N}$, we find $C_k > 0$ for which

$$|z^k \phi(z)| \leq C_k e^{\left(\Omega(b \in |I(z)|)\right)}$$
, $z \in \mathbb{C}$,

(ii) $Sup_{y \in \mathbb{R}} \left\| e^{-\Omega\left(b\left(1+\frac{1}{n}\right)|y|\right)} (x+iy)^m \phi(x+iy) \right\|_p < \infty$, for every $n \in \mathbb{N} - \{0\}$ and

 $m \in \mathbb{N}$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

Volume 3, Issue 1

A complex valued and smooth function $\phi = \phi(x)$, $x \in I$ is in $W e_{M,a}^{p,\Omega,b}$ if and only if, ϕ

ISSN: 2249-1058

is in S_e admitting a holomorphic extension to the whole complex plane and ϕ satisfies (i) and

(iii)
$$Sup_{y\in\mathbb{R}} \left\| e^{\left(M \left[a(1-1/m)x \right] - \Omega \left[b\left(1+\frac{1}{n} \right) |y| \right] \right) \phi (x+iy)} \right\|_p < \infty \text{ for every } m, n \in \mathbb{N} - \{0\}.$$

In Section 2 we establish that $W e^p_{\alpha,\beta,M,a} = W e_{M,a}$, $W e^{p,\Omega,b} = W e^{\Omega,b}$ and $W e^{p,\Omega,b}_{M,a} = W e^{\Omega,b}_{M,a}$ for every $(\alpha - \beta) > -1/2$ and $1 \le p \le \infty$.

Throughout this paper for every $1 \le p \le \infty$ we denote by p' the conjugate of $p(i.e. p' = \frac{p}{p-1})$. Also by *C* we always represent a suitable positive constant, not necessarily the same in each occurrence.

2. Characterizations of We –spaces: In this section we prove by using the Hankel type transformation $h_{\alpha,\beta}$, that $We_{\alpha,\beta,M,a}^{p} = We_{M,a}$, $We^{p,\Omega,b} = We_{\alpha,b}^{\Omega,b}$ and $We_{M,a}^{p,\Omega,b} = We_{M,a}^{\Omega,b}$ for every $(\alpha - \beta) > -1/2$ and $1 \le p \le \infty$.

Lemma 2.1: Let $1 \le p \le \infty$ and $(\alpha - \beta) > -1/2$. Then $W e^p_{\alpha,\beta,M,a}$ is contained in $W e_{M,a}$. **Proof:** First assume that $1 \le p \le \infty$. Let ϕ be in $W e^p_{\alpha,\beta,Ma}$. Define

$$\psi(y) = h_{\alpha,\beta}(\phi)(y) = \int_0^\infty (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \phi(x) x^{4\alpha} dx, \ y \in \mathbb{C}.$$
(2.1)

According to Corollary 4.8 in [1], ψ is in S_e . Moreover, the last integral is defined for every $y \in \mathbb{C}$. In fact, for every $y \in \mathbb{C}$ and $n \in \mathbb{N} - \{0\}$, by virtue of (5.3b) of [2] and Holder's inequality

we have

$$\int_{0}^{\infty} |(xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy)| |\phi(x)| x^{4\alpha} dx \le C \int_{0}^{\infty} e^{x|I(y)|} |\phi(x)| x^{4\alpha} dx$$
$$\le C \int_{0}^{\infty} e^{x|I(y)| - M(\alpha(1-1/n)x)} e^{M(\alpha(1-1/n)x)} |\phi(x)| x^{4\alpha} dx$$

$$\leq C \left(\int_{0}^{\infty} \left| e^{x|I(y) - M(a(1-1/n)x)|} x^{4\alpha} \right|^{p'} dx \right)^{1/p'} \\ \times \left(\int_{0}^{\infty} \left| e^{M(a(1-1/n))x} \phi(x) \right|^{p} dx \right)^{1/p}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology http://www.ijmra.us

250

VII I

ISSN: 2249-1058

$$\leq C \left(\int_{0}^{\infty} \left| e^{x \left| I(y) - M(a(1-1/n)) x^{4\alpha} \right|^{p'}} dx \right)^{1/p'}.$$

Moreover, denoting as usual by M^x the yong dual of M, according to well-known properties of M^x ([4]) we obtain for every $x \in I$, $y \in \mathbb{C}$, $n, m \in \mathbb{N} - \{0\}$, where 1 < m < n,

$$\begin{aligned} x|I(y)| - M(a(1-1/n)x) &= \frac{x|I(y)|}{a(1-1/m)} \ a(1-1/m) - M(a(1-1/n)x) \\ &\leq M(a(1-1/m)x) - M\left(a\left(1-\frac{1}{n}\right)x\right) \\ &+ M^{X}\left(\frac{|I(y)|}{a(1-1/m)}\right) \\ &\leq -M\left(a\left(\frac{1}{m}-1/n\right)x\right) + M^{X}\left(\frac{I(y)}{a(1-1/m)}\right). \end{aligned}$$

Hence for every $m, n \in \mathbb{N} - \{0\}$ with 1 < m < n we can write

$$\int_{0}^{\infty} |(xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy)| |\phi(x)| x^{4\alpha} dx$$

$$\leq C \left(\int_{0}^{\infty} e^{-M\left(a\left(\frac{1}{m}-1/n\right)x\right)} x^{4\alpha} \right)^{p'} dx)^{1/p'} e^{M^{X}\left(\frac{|I(y)|}{a(1-1/m)}\right)}$$

$$\leq C e^{M^{X}\left(\frac{|I(y)|}{a(1-1/m)}\right)}, \quad y \in \mathbb{C}, \quad because \lim_{x \to \infty} M'(x) = \infty$$

If p = 1 or $p = \infty$ we can argue in a similar way.

Thus we conclude that the integral in the right hand side of (2.1) is a continuous extension of ψ to the whole complex plane. Moreover, by proceeding in a similar way we can see that it also is entire. Such an extension will be denoted again by ψ . Note that ψ is an even function.

We prove that $\psi \in W e^{M^{X,1/a}}$. It is simple to deduce from Lemma 5-4-1 of [9] that for every $k \in \mathbb{N}$

$$y^{2k} \psi(y) = (-1)^k \int_0^\infty (xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy) \,\Delta_{\alpha,\beta}^k \left[\phi(x)\right] x^{4\alpha} \, dx, \ y \in \mathbb{C} \,.$$

Then, proceeding as above, we get for every $k, m \in \mathbb{N}, m > 1$,

$$|y^{2k} \psi(y)| \leq \int_0^\infty |(xy)^{-(\alpha-\beta)} J_{\alpha-\beta}(xy)| |\Delta_{\alpha,\beta}^k[\phi(x)] x^{4\alpha} dx$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

Volume 3, Issue 1

$$\leq C \int_{0}^{\infty} e^{x|I(y)|} x^{4\alpha} \left| \Delta_{\alpha,\beta}^{k} \left[\phi(x) \right] \right| dx$$

$$\leq C e^{M^X \left(rac{|I(y)|}{a(1-1/m)}
ight)}$$
, $y \in \mathbb{C}$.

(2.2)

SSN: 2249-105

Hence $\psi \in W e^{M^X, 1/a}$.

Since $h_{\alpha,\beta} = h_{\alpha,\beta}^{-1}$ on S_e , according to Lemma 7.4 of [2], we conclude that $W e_{\alpha,\beta,M,a}^p$ is contained in $W e_{M,a}$.

Lemma 2.2: Let $1 \le p \le \infty$ and $(\alpha - \beta) > -1/2$. Then $W e_{M,\alpha}$ is contained in $W e_{\alpha,\beta,M,\alpha}^p$.

Proof: By virtue of Lemma 7.3 of [2], $h_{\alpha,\beta}(W e_{M,a}) \subset W e^{M^{X}, 1/a}$.

Since $h_{\alpha,\beta} = h_{\alpha,\beta}^{-1}$ on S_e , our result will be established when we see that $h_{\alpha,\beta}(\phi)$ is in $W e_{\alpha,\beta,M,\alpha}^p$.

Note first that according to Corollary 4.8 of [1], $h_{\alpha,\beta} \phi$ is in S_e . Let $k \in \mathbb{N}$. By involving Lemma 5-4-1 of [9] we can obtain that

$$\Delta_{\alpha,\beta}^{k} h_{\alpha,\beta} \left(\phi\right) \left(x\right) = (-1)^{k} h_{\alpha,\beta} \left(z^{2k} \phi\left(z\right)\right) \left(x\right), \ x \in I.$$

$$(2.3)$$

A procedure similar to the one developed in the proof of Lemma 6.1 of [2] allows us to write, for every x > 1 and $\tau > 0$,

$$\Delta_{\alpha,\beta}^{k} h_{\alpha,\beta} (\phi) (x) = \frac{1}{2} \int_{-\infty}^{\infty} \left(x (\sigma + i\tau) \right)^{-(\alpha - \beta)} H_{\alpha,\beta}^{(1)} \left(x (\sigma + i\tau) \right) \phi (\sigma + i\tau) \times (\sigma + i\tau)^{2(\alpha - \beta) + 2k + 1} d\sigma ,$$

where $H_{\alpha,\beta}^{(1)}$ denotes the Hankel type functions ([8], p.73).

Now for every x > 1 and $\tau > 0$ we divide the last integral as follows :

$$\int_{-\infty}^{\infty} (x(\sigma+i\tau))^{-(\alpha-\beta)} H^{(1)}_{\alpha,\beta}(x(\sigma+i\tau)) \phi (\sigma+i\tau)(\sigma+i\tau)^{2(\alpha-\beta)+2k+1} d\sigma$$

$$\left(\int_{|x(\sigma+i\tau)|\leq 1} + \int_{|x(\sigma+i\tau)|>1} \right) (x(\sigma+i\tau))^{-(\alpha-\beta)} H^{(1)}_{\alpha,\beta}$$

$$\times (x(\sigma+i\tau)) \phi (\sigma+i\tau) (\sigma+i\tau)^{2(\alpha-\beta)+2k+1} d\sigma.$$

We will analyze each of the integrals separately.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

Assume first that $(\alpha - \beta) \ge 1/2$. On one side by using (5.3 c) of [2], we get for every $n \in \mathbb{N} - \{0\}$

ISSN: 2249-1058

$$\int_{|x(\sigma+i\tau)|\leq 1} \left| \left(x(\sigma+i\tau) \right)^{-(\alpha-\beta)} H^{(1)}_{\alpha,\beta} \left(x(\sigma+i\tau) \right) \phi \left(\sigma+i\tau \right) (\sigma+i\tau)^{2(\alpha-\beta)+2k+1} \right| d\sigma$$

$$\leq C e^{-x\tau} \int_{-\infty}^{\infty} |\phi(\sigma + i\tau)| \, d\sigma$$

 $\leq C e^{-x\tau + M^X[1/a(1+1/n)\tau]}$, x > 1 and $\tau > 0$;

IJМ

On the other hand, by using again (5.3c) of [2], for every $n \in \mathbb{N} - \{0\}$

$$\int_{(\alpha+i\tau)>1} \left| \left(x(\sigma+i\tau) \right)^{-(\alpha-\beta)} H^{(1)}_{\alpha,\beta} \left(x(\sigma+i\tau) \right) \phi(\sigma+i\tau) \left(\sigma+i\tau \right)^{2(\alpha-\beta)+2k+1} \right| d\sigma$$

 $|x(\sigma+i\tau)|>1$

$$\leq C e^{-x\tau} \int_{-\infty}^{\infty} |\phi(\sigma + i\tau)(\sigma + i\tau)^{2(\alpha - \beta) + 2k + 1}| d\sigma$$

$$\leq C e^{-x\tau + M^{X}[1/\alpha(1 + 1/n)\tau]}, \quad x > 1 \text{ and } \tau > 0.$$
(2.5)

For fixed $n \in \mathbb{N} - \{0\}$, we choose $\tau > 0$ such that

$$M^{X'}\left(\frac{1}{a}\left(1+\frac{1}{n}\right)\tau\right) = \frac{ax}{(1+1/n)}.$$

Then from Lemma 2.4 of [2] we have

$$-x\tau + M^{X}(1/a(1+1/n)\tau) - M\left(\frac{ax}{1+1/n}\right).$$
(2.6)

Hence by combining (2.4), (2.5) and (2.6), it follows that

$$\left|\Delta_{\alpha,\beta}^{k} h_{\alpha,\beta}(\phi)(x)\right| \leq C e^{-M\left[ax\left(1-\frac{1}{n+1}\right)\right], x>1, and n \in \mathbb{N}}.$$

Note also that, if $-1/2 < (\alpha - \beta) < 1/2$, by involving (5.3.d) of [2] one has

$$\left|\Delta_{\alpha,\beta}^{k} h_{\alpha,\beta} \phi(x)\right| \leq C e^{-x\tau} \int_{-\infty}^{\infty} \left|\phi(\sigma+i\tau)(\sigma+i\tau)^{\alpha-\beta+2k+1/2}\right| d\sigma, \ \tau > 0$$

and x > 1.

Proceeding as above, we conclude that

$$\left|\Delta_{\alpha,\beta}^{k} h_{\alpha,\beta} \left(\phi\right)(x)\right| \leq C \ e^{-M[ax(1-1/n)]}, \qquad x > 1 \ and \ m \in \mathbb{N} - \{0\}.$$

Now let $x \in (0,1)$ and $m \in \mathbb{N} - \{0\}$. According to (5.3b) of [2] we have

$$\left| e^{M[ax(1-1/m)]} \Delta_{\alpha,\beta}^{k} \left[h_{\alpha,\beta} \left(\phi \right) \left(x \right) \right] \right| = \left| e^{M[ax(1-1/m)]} h_{\alpha,\beta} \left(z^{2k} \phi(z) \right) (x) \right|$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

<u>ISSN: 2249-1058</u>

$$\leq C \int_{0}^{\infty} \sigma^{2(\alpha-\beta)+2k+1} |\phi(\sigma)| \, d\sigma$$

because *M* is an increasing function on $(0, \infty)$.

Hence, for every $k \in \mathbb{N}$ and $m \in \mathbb{N} - \{0\}$,

$$\left|e^{M[ax(1-1/m)]}\Delta_{\alpha,\beta}^{k}h_{\alpha,\beta}(\phi)(x)\right| \leq C, \qquad x>0$$

and, if $m \in \mathbb{N} - \{0\}$, $k \in \mathbb{N}$ and $1 \le p < \infty$, then

$$\left(\int_{0}^{\infty} \left| e^{M[ax(1-1/m)]} \Delta_{\alpha,\beta}^{k} h_{\alpha,\beta} \left(\phi\right) \left(x\right) \right|^{p} dx \right)^{1/p} \leq C$$

because

$$\int_{0}^{\infty} e^{-pM\left[ax\left(1/m-\frac{1}{(m+1)}\right)\right]} dx < \infty.$$

Thus we establish that $h_{\alpha,\beta} \phi \in W e^p_{\alpha,\beta,M,\alpha}$, $1 \le p \le \infty$, and the proof is completed.

From Lemmas 2.1 and 2.2 we deduce

Theorem 2.1: For every $1 \le p \le \infty$ and $(\alpha - \beta) > -1/2$, $W e_{\alpha,\beta,M,\alpha}^p = W e_{M,\alpha}$.

Lemma 2.3: Let $1 \le p \le \infty$. Then $W e^{p,\Omega,b}$ is contained in $W e^{\Omega,b}$.

Proof: Let ϕ be in $W e^{p,\Omega,b}$. Assume that $(\alpha - \beta) > -1/2$. Proceeding as in the proof of Lemma 2.2 we can establish that for every $k \in \mathbb{N}$ there exists $\ell = \ell(k)$ such that

 $\left|\Delta_{\alpha,\beta}^{k} h_{\alpha,\beta}\left(\phi\right)\left(x\right)\right| \leq C \, e^{-x\tau} \, \int_{-\infty}^{\infty} \left|\phi\left(\sigma+i\tau\right)\right| \left(|\sigma+i\tau|^{\ell}+1\right) d\sigma, \ \tau, \ x \in (0,\infty).$

Hence, according to Holder's inequality and (2.6), we obtain for each $k \in \mathbb{N}$, $m \in \mathbb{N} - \{0\}$ and suitable $\tau > 0$

$$\begin{split} & e^{\Omega^{X}\left[\frac{1}{b}(1-1/m)x\right]} \left| \Delta_{\alpha,\beta}^{k} h_{\alpha,\beta} \left(\phi\right) \left(x\right) \right| \\ & \leq C e^{\Omega^{X}\left[\frac{1}{b}\left(1-\frac{1}{m}\right)x\right] - \Omega^{X}\left[\frac{1}{b}\left(1-\frac{1}{m+1}\right)\right)x} \left\{ \int_{-\infty}^{\infty} \frac{d\sigma}{(1+\sigma^{2})^{p'}} \right\}^{1/p'} \\ & \times \left\{ \int_{-\infty}^{\infty} e^{-\Omega\left[b\left(1+\frac{1}{m}\right)\tau\right]} \left(|\sigma+i\tau|+1)\left(|\sigma+i\tau|^{\ell}+1\right)|\phi(\sigma+i\tau)|\right)^{p} d\sigma \right\}^{1/p} \\ & \leq C, x \in (0,\infty) \,, \end{split}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 3, Issue 1

provided that $1 \le p \le \infty$. When p = 1 or $p = \infty$ we can proceed in a similar way. Thus we

ISSN: 2249-1058

prove that $h_{\alpha,\beta}(\phi) \in W e_{\alpha,\beta,\Omega^{X},1/p}^{\infty}$. Therefore Theorem 2.1 shows that $h_{\alpha,\beta}(\phi) \in W e_{\Omega^{X},1/p}$. Since $h_{\alpha,\beta} = h_{\alpha,\beta}^{-1}$ on S_e , it is sufficient to take into account Lemma 7.3 of [2] to see that

 $\phi \in W e^{\Omega,b}$, and the proof of this lemma is complete.

The next result is not difficult to see.

IJV

Lemma 2.4: Let $1 \le p \le \infty$. Then $W e^{\Omega,b}$ is contained in $W e^{p,\Omega,b}$.

As an immediate consequence of Lemmas 2.3 and 2.4 we obtain the following

Theorem 2.2: Let $1 \le p \le \infty$. Then $W e^{p,\Omega,b} = W e^{\Omega,b}$.

Lemma 2.5: Let $1 \le p \le \infty$. Then $W e_{M,a}^{p,\Omega,b}$ is contained in $W e_{M,a}^{\Omega,b}$.

Proof: Let $\phi \in W e_{M,\alpha}^{p,\Omega,b}$. Choose $(\alpha - \beta) \ge 1/2$. Since $h_{\alpha,\beta} = h_{\alpha,\beta}^{-1}$ on S_e , by virtue of Lemma 7.5 of [2], to prove this lemma it is sufficient to see that $h_{\alpha,\beta} \phi$ is in $W e_{\Omega^X, 1/b}^{M^X, 1/a}$. The Hankel type transformation $h_{\alpha,\beta} \phi$ of ϕ is in S_e (Corollary 4.8 [1]). Moreover proceeding as in the proof of Lemma 2.1, we can see that $h_{\alpha,\beta} \phi$ can be holomorphically extended to the whole complex plane.

Let $\tau > 0$. An argument similar to the one developed in Lemma 6.1 of [2] allows us to write.

$$\begin{pmatrix} h_{\alpha,\beta}\phi \end{pmatrix}(x) = \frac{1}{2} \int_{-\infty}^{\infty} \left(x(\sigma+i\tau)\right)^{-(\alpha-\beta)} H_{\alpha,\beta}^{(1)}\left(x(\sigma+i\tau)\right)\phi\left(\sigma+i\tau\right) \\ \times (\sigma+i\tau)^{4\alpha} d\sigma, \quad |x| > 1.$$

As in the proof of Lemma 2.2,

$$\begin{pmatrix} h_{\alpha,\beta} \phi \end{pmatrix}(x) = \frac{1}{2} \left(\int_{|x(\sigma+i\tau)| \le 1} + \int_{|x(\sigma+i\tau)>1|} \right) (x(\sigma+i\tau))^{-(\alpha-\beta)} H^{(1)}_{\alpha,\beta}$$
$$\times (x(\sigma+i\tau)) \phi (\sigma+i\tau) (\sigma+i\tau)^{4\alpha} d\sigma, \quad |x| > 1.$$

We must analyze each of the two integrals.

According to (5.3c) of [2] we have, for every $n, m \in \mathbb{N} - \{0\}$,

$$\begin{split} & \int_{|x(\sigma+i\tau)|>1} \left| \left(x \left(\sigma+i\tau \right) \right)^{-(\alpha-\beta)} H_{\alpha,\beta}^{(1)} \left(x \left(\sigma+i\tau \right) \right) \phi(\sigma+i\tau) \left(\sigma+i\tau \right)^{4\alpha} \right| \, d\sigma \\ & \leq C \, |x|^{2\beta-1} \, \int_{-\infty}^{\infty} e^{-(R(x))\tau - (I(x))\sigma} \, |\phi \left(\sigma+i\tau \right) \left(\sigma+i\tau \right)^{2\alpha} | d\sigma, \end{split}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Marketing and Technology http://www.ijmra.us

2013

Volume 3, Issue 1

$$\leq C|x|^{2\beta-1}\left\{\int_{-\infty}^{\infty}e^{\left(R(x)\right)\tau+|I(x)||\sigma|-M\left(a\left(1-\frac{1}{n}\right)\sigma\right)+\Omega\left(b\left(1+\frac{1}{m}\right)\tau\right)}(|\sigma+i\tau|^{2\alpha})^{p'}\,d\sigma\right\}^{1/p'},$$

<u>ISSN: 2249-1058</u>

where |x| > 1, provided that 1 . By Lemma 2.4 of [2],

$$|I(x)||\sigma| \le M^X \left(\frac{|I(x)|}{a\left(1-\frac{1}{\ell}\right)}\right) + M\left(a(1-1/\ell)|\sigma|, \sigma \in \mathbb{R}, x \in \mathbb{C}\right) and \ \ell \in \mathbb{N},$$

 $\ell > 1.$

Then

$$|R(x)||\sigma| - M\left(a(1-1/n)|\sigma|\right) \le M^X\left(\frac{|R(x)|}{a(1-1/\ell)}\right) - M\left(a\left(\frac{1}{\ell}-1/n\right)|\sigma|\right),$$

where $\sigma \in \mathbb{R}$, $x \in \mathbb{C}$ and ℓ , $n \in \mathbb{N}$, n > l > 1.

IJN

We assume now that R(x) > 0 and we choose $\tau > 0$ such that

$$\Omega'(b(1+1/m)\tau) = \frac{R(x)}{b(1+1/m)} .$$

Then again by Lemma 2.4 of [2],

$$\tau R(x) = \Omega(b(1+1/m)\tau) + \Omega^X \left(\frac{R(x)}{b(1+1/m)}\right)$$

Hence, Since $(2\beta - 1) \le 0$ and $1 , we obtain for every <math>|x| \ge 1$ and R(x) > 0

$$\int_{|x(\sigma+i\tau)|>1} \left| \left(x(\sigma+i\tau) \right)^{-(\alpha-\beta)} H_{\alpha,\beta}^{(1)} \left(x(\sigma+i\tau) \right) \phi(\sigma+i\tau) (\sigma+i\tau)^{4\alpha} \right| d\sigma$$

$$\leq C e^{M^{X} \left(\frac{|I(x)|}{a(1-1/\ell)} \right) - \Omega^{X} \left(\frac{R(x)}{b(1+1/m)} \right)}$$

$$\times \left(\int_{-\infty}^{\infty} \left(e^{-M(\alpha(1/\ell-1/n)|\sigma|)} |\sigma+i\tau|^{2\alpha} \right)^{p'} d\sigma \right)^{1/p'}$$

$$\leq C e^{M^{X} \left(\frac{|I(x)|}{a(1-1/\ell)} \right) - \Omega^{X} \left(\frac{R(x)}{b(1+1/m)} \right), \ n,m,\ell \in \mathbb{N} - \{0\}, \ 1 < \ell < n}$$
(2.7)

because

$$\int_{-\infty}^{\infty} \left(e^{-M(a(1/\ell - 1/n)|\sigma|)} |\sigma + i\tau|^{2\alpha} \right)^{p'} d\sigma < \infty$$

If p = 1 or $p = \infty$, we can proceed in a similar way.

On the other hand, by (5.3c) of [2]

$$\int_{|x(\sigma+i\tau)|\leq 1} \left| \left(x(\sigma+i\tau) \right)^{-(\alpha-\beta)} H^{(1)}_{\alpha,\beta} \left(x(\sigma+i\tau) \right) \phi \left(\sigma+i\tau \right) \left(\sigma+i\tau \right)^{4\alpha} \right| \, d\sigma \tag{2.8}$$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. **International Journal of Marketing and Technology** http://www.ijmra.us

Volume 3, Issue 1

ISSN: 2249-1058

$$\leq C |x|^{-2(\alpha-\beta)} \int_{-\infty}^{\infty} e^{-(R(x))\tau+|I(x)||\sigma|} |\phi(\sigma+i\tau)(\sigma+i\tau)| d\sigma$$

$$\leq C e^{M^{X}\left(\frac{|I(x)|}{a\left(1-\frac{1}{\ell}\right)}\right)-\Omega^{X}\left(\frac{R(x)}{b(1+1/m)}\right)}, \quad |x| \geq 1$$

and

 $R(x) > 0, \text{ for } m, \ell \in \mathbb{N} - \{0\}, \ \ell > 1.$

Hence from (2.7) and (2.8) we conclude that

$$|h_{\alpha,\beta}\phi(x)| \le C e^{M^{X}\left(\frac{1}{a}\left(1+\frac{1}{\ell-1}\right)|I(x)|\right) - \Omega^{X}\left(\frac{1}{b}\left[1-\frac{1}{m+1}\right]R(x)\right)}$$
(2.9)

for every $|x| \ge 1$ and R(x) > 0, $m, \ell \in \mathbb{N}$, where $\ell > 1$.

Since $h_{\alpha,\beta} \phi$ is even, the corresponding inequality (2.9) also holds when R(x) < 0. Now let |x| < 1. By using (5.3b) of [2] we deduce that

$$\left|h_{\alpha,\beta} \phi(x)\right| \leq C \int_{0}^{\infty} e^{t|I(x)|} \left|\phi(t)\right| t^{4\alpha} dt.$$

Proceeding as in the above case, we conclude that $h_{\alpha,\beta} \phi \in W e_{\Omega^{X}, 1/b}^{M^{X}, 1/a}$.

Thus proof is completed.

Now we can prove the following result easily.

Lemma 2.6: Let $1 \le p \le \infty$. Then $W e_{M,a}^{\Omega,b}$ is contained in $W e_{M,a}^{p,\Omega,b}$.

From Lemma 2.5 and 2.6 we obtain

Theorem 2.3: Let $1 \le p \le \infty$. Then $W e_{M,a}^{p,\Omega,b} = W e_{M,a}^{\Omega,b}$.

References:

- 1. S.J.L. Van Eijndhoven and J. de Graaf, Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. Van Wetensch, A 86(1983), 77-87, MR 84 e: 46037.
- S.J.L. Van Eijndhoven and M.J.Kerkhof, The Hankel transformation and spaces of type W, reports on Applied and Numerical Analysis, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1988.
- I.M. Gelfand and G.E. Shilov, Generalized functions, Vol.2, Academic Press, New York, 1967, MR 37:5693.
- 4. I.M. Gelfand and G.E. Shilov, Generalized functions, Vol.3, Academic Press, New York, 1967, MR 36:507.
- B.L. Gurevich, Nouveaux espaces de fonctions fondamentales et generalizes et le problem de Cauchy pour des systems d' equations aux differences finis, D.A.N SSSR, 99 (1954), 893-896 ; 108(1956), 1001-1003. (Russian) MR 16: 720b ; MR 18:216e.
- 6. R. S. Pathak, On Hankel transformable spaces and a Cauchy problem, Can. J. Math., XXX VII (1) (1985), 84-106, MR 86d : 46037.
- R. S. Pathak and S.K. Upadhyay, W^p spaces and Fourier transform, Proc. Amer. Math. Soc., 121(3) (1994), 733-738. MR 94i:46051.
- 8. G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1956. MR 6:64a (1944 ed.)
- A.H.Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968. MR 54: 10991.